What do You Know about Die Casting

Introduction

Die casting is a versatile process for producing engineered metal parts by forcing molten metal under high pressure into reusable steel molds. These molds, called dies, can be designed to produce complex shapes with a high degree of accuracy and repeatability. Parts can be sharply defined, with smooth or textured surfaces, and are suitable for a wide variety of attractive and serviceable finishes.

Die castings are among the highest volume, mass-produced items manufactured by the metalworking industry, and they can be found in thousands of consumer, commercial and industrial products. Die cast parts are important components of products ranging from automobiles to toys. Parts can be as simple as a sink faucet or as complex as a connector housing.

Die cast parts are found in many places around the home. The polished, plated zinc die casting in this kitchen faucet illustrates one of the many finishes possible with die casting.

These connector housings are examples of the durable, highly accurate components that can be produced with today’s modern die casting.

History

The earliest examples of die casting by pressure injection - as opposed to casting by gravity pressure - occurred in the mid-1800s. A patent was awarded to Sturges in 1849 for the first manually operated machine for casting printing type. The process was limited to printer’s type for the next 20 years, but development of other shapes began to increase toward the end of the century. By 1892, commercial applications included parts for phonographs and cash registers, and mass production of many types of parts began in the early 1900s.

The first die casting alloys were various compositions of tin and lead, but their use declined with the introduction of zinc and aluminum alloys in 1914. Magnesium and copper alloys quickly followed, and by the 1930s, many of the modern alloys still in use today became available.

The die casting process has evolved from the original low-pressure injection method to techniques including high-pressure casting — at forces exceeding 4500 pounds per square inch — squeeze casting and semi-solid die casting. These modern processes are capable of producing high integrity, near net-shape castings with excellent surface finishes.

The Future

Refinements continue in both the alloys used in die casting and the process itself, expanding die casting applications into almost every known market. Once limited to simple lead type, today’s die casters can produce castings in a variety of sizes, shapes and wall thicknesses that are strong, durable and dimensionally precise.

A magnesium seat pan shows how complex, lightweight die cast components can improve production by replacing multiple pieces.

The Advantages of Die Casting

Die casting is an efficient, economical process offering a broader range of shapes and components than any other manufacturing technique. Parts have long service life and may be designed to complement the visual appeal of the surrounding part. Designers can gain a number of advantages and benefits by specifying die cast parts.

High-speed production - Die casting provides complex shapes within closer tolerances than many other mass production processes. Little or no machining is required and thousands of identical castings can be produced before additional tooling is required.

Dimensional accuracy and stability - Die casting produces parts that are durable and dimensionally stable, while maintaining close tolerances. They are also heat resistant.

Strength and weight - Die cast parts are stronger than plastic injection moldings having the same dimensions. Thin wall castings are stronger and lighter than those possible with other casting methods. Plus, because die castings do not consist of separate parts welded or fastened together, the strength is that of the alloy rather than the joining process.

Multiple finishing techniques - Die cast parts can be produced with smooth or textured surfaces, and they are easily plated or finished with a minimum of surface preparation.

Simplified Assembly - Die castings provide integral fastening elements, such as bosses and studs. Holes can be cored and made to tap drill sizes, or external threads can be cast.

Die Casting Process

The basic die casting process consists of injecting molten metal under high pressure into a steel mold called a die. Die casting machines are typically rated in clamping tons equal to the amount of pressure they can exert on the die. Machine sizes range from 400 tons to 4000 tons. Regardless of their size, the only fundamental difference in die casting machines is the method used to inject molten metal into a die. The two methods are hot chamber or cold chamber. A complete die casting cycle can vary from less than one second for small components weighing less than an ounce, to two-to-three minutes for a casting of several pounds, making die casting the fastest technique available for producing precise non-ferrous metal parts.

Die Casting vs. Other Processes

Die casting vs. plastic molding - Die casting produces stronger parts with closer tolerances that have greater stability and durability. Die cast parts have greater resistance to temperature extremes and superior electrical properties.

Die casting vs. sand casting - Die casting produces parts with thinner walls, closer dimensional limits and smoother surfaces. Production is faster and labor costs per casting are lower. Finishing costs are also less.

Die casting vs. permanent mold - Die casting offers the same advantages versus permanent molding as it does compared with sand casting.

Die casting vs. forging - Die casting produces more complex shapes with closer tolerances, thinner walls and lower finishing costs. Cast coring holes are not available with forging.

Die casting vs. stamping - Die casting produces complex shapes with variations possible in section thickness. One casting may replace several stampings, resulting in reduced assembly time.

Die casting vs. screw machine products - Die casting produces shapes that are difficult or impossible from bar or tubular stock, while maintaining tolerances without tooling adjustments. Die casting requires fewer operations and reduces waste and scrap.

Choosing the Proper Alloy

Each of the metal alloys available for die casting offer particular advantages for the completed part.

Zinc - The easiest alloy to cast, it offers high ductility, high impact strength and is easily plated. Zinc is economical for small parts, has a low melting point and promotes long die life.

Aluminum - This alloy is lightweight, while possessing high dimensional stability for complex shapes and thin walls. Aluminum has good corrosion resistance and mechanical properties, high thermal and electrical conductivity, as well as strength at high temperatures.

Magnesium - The easiest alloy to machine, magnesium has an excellent strength-to-weight ratio and is the lightest alloy commonly die cast.

Copper - This alloy possesses high hardness, high corrosion resistance and the highest mechanical properties of alloys cast. It offers excellent wear resistance and dimensional stability, with strength approaching that of steel parts.

Lead and Tin - These alloys offer high density and are capable of producing parts with extremely close dimensions. They are also used for special forms of corrosion resistance.

Die Construction

Dies, or die casting tooling, are made of alloy tool steels in at least two sections, the fixed die half, or cover half, and the ejector die half, to permit removal of castings. Modern dies also may have moveable slides, cores or other sections to produce holes, threads and other desired shapes in the casting. Sprue holes in the fixed die half allow molten metal to enter the die and fill the cavity. The ejector half usually contains the runners (passageways) and gates (inlets) that route molten metal to the cavity. Dies also include locking pins to secure the two halves, ejector pins to help remove the cast part, and openings for coolant and lubricant.

When the die casting machine closes, the two die halves are locked and held together by the machine’s hydraulic pressure. The surface where the ejector and fixed halves of the die meet and lock is referred to as the "die parting line." The total projected surface area of the part being cast, measured at the die parting line, and the pressure required of the machine to inject metal into the die cavity governs the clamping force of the machine.

There are four types of dies:

1. Single cavity to produce one component

2. Multiple cavity to produce a number of identical parts

3. Unit die to produce different parts at one time

4. Combination die to produce several different parts for an assembly.

Hot Chamber Machines

Click on the image to see an animation

Hot chamber machines are used primarily for zinc, copper, magnesium, lead and other low melting point alloys that do not readily attack and erode metal pots, cylinders and plungers. The injection mechanism of a hot chamber machine is immersed in the molten metal bath of a metal holding furnace. The furnace is attached to the machine by a metal feed system called a gooseneck. As the injection cylinder plunger rises, a port in the injection cylinder opens, allowing molten metal to fill the cylinder. As the plunger moves downward it seals the port and forces molten metal through the gooseneck and nozzle into the die cavity. After the metal has solidified in the die cavity, the plunger is withdrawn, the die opens and the casting is ejected.

Cold Chamber Machines

Click on the image to see an animation

Cold chamber machines are used for alloys such as aluminum and other alloys with high melting points. The molten metal is poured into a "cold chamber," or cylindrical sleeve, manually by a hand ladle or by an automatic ladle. A hydraulically operated plunger seals the cold chamber port and forces metal into the locked die at high pressures.

High Integrity Die Casting Methods

There are several variations on the basic process that can be used to produce castings for specific applications. These include:

Squeeze casting - A method by which molten alloy is cast without turbulence and gas entrapment at high pressure to yield high quality, dense, heat treatable components.


Click on the image to see an animation

Semi-solid molding - A procedure where semi-solid metal billets are cast to provide dense, heat treatable castings with low porosity.

Automation and Quality Control

Modern die casters use a number of sophisticated methods to automate the die casting process and provide continuous quality control. Automated systems can be used to lubricate dies, ladle metal into cold chamber machines and integrate other functions, such as quenching and trimming castings. Microprocessors obtain metal velocity, shot rod position, hydraulic pressure and other data that is used to adjust the die casting machine process, assuring consistent castings shot after shot. These process control systems also collect machine performance data for statistical analysis in quality control.

Die Casting Design

Die casting is one of the fastest and most cost-effective methods for producing a wide range of components. However, to achieve maximum benefits from this process, it is critical that designers collaborate with the die caster at an early stage of the product design and development. Consulting with the die caster during the design phase will help resolve issues affecting tooling and production, while identifying the various trade-offs that could affect overall costs.

For instance, parts having external undercuts or projections on sidewalls often require dies with slides. Slides increase the cost of the tooling, but may result in reduced metal use, uniform casting wall thickness or other advantages. These savings may offset the cost of tooling, depending upon the production quantities, providing overall economies.

Many sources are available for information on die casting design, including textbooks, technical papers, trade journals and professional associations. While this section is not intended to provide a comprehensive review of all the factors involving die casting design, it will highlight some of the primary considerations. Additional sources of information are listed in the "Resources" section of this brochure.

Alloy Properties One of the first steps in designing a die cast component is choosing the proper alloy. Typical properties for the most commonly used alloys are shown on the linked charts.

Comparing Materials

The cost of materials is another important design consideration. Accurate comparisons require looking beyond the cost per pound or cost per cubic inch to fully analyze the advantages and disadvantages of each competing process. For instance, the relatively greater strength of metals generally allows thinner walls and sections and consequently requires fewer cubic inches of material than plastics for a given application. sumber : http://www.diecasting.org

Advantages and Disadvantages of Die Casting

Advantages:

  • Excellent dimensional accuracy (dependent on casting material, but typically 0.1 mm for the first 2.5 cm (0.005 in. for the first inch) and 0.02 mm for each additional centimeter (0.002 in. for each additional inch).
  • Smooth cast surfaces (1–2.5 micrometres or 0.04–0.10 thou rms).
  • Thinner walls can be cast as compared to sand and permanent mold casting (approximately 0.75 mm or 0.030 in).
  • Inserts can be cast-in (such as threaded inserts, heating elements, and high strength bearing surfaces).
  • Reduces or eliminates secondary machining operations.
  • Rapid production rates.
  • Casting tensile strength as high as 415 MPa (60 ksi).
  • Castings are made as large as an 8 feet across and 30Lbs in weight. In magnesium

Disadvantages:

  • Casting weight must be between 30 grams (1 oz) and 10 kg (20 lb).
  • High initial cost.
  • Limited to high-fluidity metals.
  • A certain amount of porosity is common.
  • A large production volume is needed to make this an economical alternative to other processes
sumber : wikipedia

Equipment of Die Casting

There are two basic types of die casting machines: hot-chamber machines (a.k.a. gooseneck machines) and cold-chamber machines. These are rated by how much clamping force they can apply. Typical ratings are between 400 and 4,000 short tons.

Hot-chamber machines rely upon a pool of molten metal to feed the die. At the beginning of the cycle the piston of the machine is retracted, which allows the molten metal to fill the "gooseneck". The gas or oil powered piston then forces this metal out of the gooseneck into the die. The advantages of this system include fast cycle times (approximately 15 cycles a minute) and the convenience of melting the metal in the casting machine. The disadvantages of this system are that high-melting point metals cannot be utilized and aluminium cannot be used because it picks up some of the iron while in the molten pool. Due to this, hot-chamber machines are primarily used with zinc, tin, and lead based alloys.

Cold-chamber machines are used when the casting alloy cannot be used in hot-chamber machines; these include aluminium, zinc alloys with a large composition of aluminium, magnesium and copper. This machine works by melting the material, first, in a separate furnace. Then a precise amount of molten metal is transported to the cold-chamber machine where it is fed into an unheated shot chamber (or injection cylinder). This shot is then driven into the die by a hydraulic or mechanical piston. This biggest disadvantage of this system is the slower cycle time due to the need to transfer the molten metal from the furnace to the cold-chamber machine.[7]

The dies used in die casting are usually made out of hardened tool steels because cast iron cannot withstand the high pressures involved. Due to this the dies are very expensive, resulting in high start-up costs. Dies may contain only one mold cavity or multiple cavities of the same or different parts. There must be at least two dies to allow for separation and ejection of the finished workpiece, however its not uncommon for there to be more sections that open and close in different directions. Dies also often contain water-cooling passages, retractable cores, ejector pins, and vents along the parting lines. These vents are usually wide and thin (approximately 0.13 mm or 0.005 in) so that when the molten metal starts filling them the metal quickly solidifies and minimizes scrap. No risers are used because the high pressure ensures a continuous feed of metal from the gate. Recently, there's been a trend to incorporate larger gates in the die and to use lower injection pressures to fill the mold, and then increase the pressure after its filled. This system helps reduce porosity and inclusions.

In addition to the dies there may be cores involved to cast features such as undercuts. Sand cores cannot be used because they disintegrate from the high pressures involved with die casting, therefore metal cores are used. If a retractable core is used then provisions must be made for it to be removed either in a straight line or circular arc. Moreover, these cores must have very little clearance between the die and the core to prevent the molten metal from escaping. Loose cores may also be used to cast more intricate features (such as threaded holes). These loose cores are inserted into the die by hand before each cycle and then ejected with the part at the end of the cycle. The core then must be removed by hand. Loose cores are more expensive due to the extra labor and time involved.

A die's life is most prominently limited by wear or erosion, which is strongly dependent on the temperature of the molten metal. Dies for zinc are often made of H13 and only hardened to 29-34 HRC.[11] Cores are either made of H13 or 440B, so that the wearing parts can be selectively nitrided for hardness, leaving the exposed part soft to resist heat checking.

Typical die temperatures and life for various cast materials

Zinc Aluminum Magnesium Brass (leaded yellow)
Maximum die life [number of cycles] 1,000,000 100,000 100,000 10,000
Die temperature [C° (F°)] 218 (425) 288 (550) 260 (500) 500 (950)
Casting temperature [C° (F°)] 400 (760) 660 (1220) 760 (1400) 1090 (2000)

Other failure modes for dies are:

  • Heat checking: surface cracks occur on the die due to a large temperature change on every cycle
  • Thermal fatigue: surface cracks occur on the die due to a large number of cycles
sumber : wikipedia

History and Process of Die Casting

Die casting is the process of forcing molten metal under high pressure into mold cavities (which are machined into dies). Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter and tin based alloys, although ferrous metal die castings are possible. The die casting method is especially suited for applications where a large quantity of small to medium sized parts are needed, ensuring precise surface quality and dimensional consistency.

This level of versatility has placed die castings among the highest volume products made in the metalworking industry

History

Die casting equipment was invented in 1838 for the purpose of producing movable type for the printing industry. The first die casting-related patent was granted in 1849 for a small hand operated machine for the purpose of mechanized printing type production. In 1885, Otto Mergenthaler invented the linotype machine, an automated type casting device that became the prominent type of equipment in the publishing industry. Other applications grew rapidly, with die casting facilitating the growth of consumer goods and appliances by making affordable the production of intricate parts in high volumes

Process

There are four major steps in the die casting process. First, the mold is sprayed with lubricant and closed. The lubricant both helps control the temperature of the die and it also assists in the removal of the casting. Molten metal is then shot into the die under high pressure; between 10—175 MPa (1,500—25,000 psi). Once the die is filled the pressure is maintained until the casting has solidified. The die is then opened and the shot (shots are different from castings because there can be multiple cavities in a die, yielding multiple castings per shot) is ejected by the ejector pins. Finally, the scrap, which includes the gate, runners, sprues and flash, must be separated from the casting(s). This is often done using a special trim die in a power press or hydraulic press. An older method is separating by hand or by sawing, which case grinding may be necessary to smooth the scrap marks. A less labor-intensive method is to tumble shots if gates are thin and easily broken; separation of gates from finished parts must follow. This scrap is recycled by remelting it. The yield is approximately 67%.

The high-pressure injection leads to a quick fill of the die, which is required so the entire cavity fills before any part of the casting solidifies. In this way, discontinuities are avoided even if the shape requires difficult-to-fill thin sections. This creates the problem of air entrapment, because when the mold is filled quickly there is little time for the air to escape. This problem is minimized by including vents along the parting lines, however, even in a highly refined process there will still be some porosity in the center of the casting.

Most die casters perform other secondary operations to produce features not readily castable, such as tapping a hole, polishing, plating, buffing, or painting.

Pore-free casting process

When no porosity is required for a casting then the pore-free casting process is used. It is identical to the standard process except oxygen is injected into the die before each shot. This causes small dispersed oxides to form when the molten metal fills the dies, which virtually eliminates gas porosity. An added advantage to this is greater strength. These castings can still be heat treated and welded. This process can be performed on aluminium, zinc, and lead alloys

Heated-manifold direct-injection die casting

Heated-manifold direct-injection die casting, also known as direct-injection die casting or runnerless die casting, is a zinc die casting process where molten zinc is forced through a heated manifold and then through heated mini-nozzles, which lead into the molding cavity. This process has the advantages of lower cost per part, through the reduction of scrap (by the elimination of sprues, gates and runners) and energy conservation, and better surface quality through slower cooling cycles.

sumber : wikipedia

Followers